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Abstract

The interactions of real-time tasks with each other and with the environment can be specified
in a platform-independent machine language called E code. E code is time safe if it can be
scheduled on a given platform so that all its timing constraints are met. For specifying static,
dynamic, and conditional schedules, we propose again an executable machine language, called
S code. A compiler for real-time programs, then, consists of a platform-independent and a
platform-dependent part. The former produces E code; the latter generates S code that ensures
the time-safe execution of the E code. The run-time system consists of an implementation of
the E machine, which interprets E code that manages interrupts from the environment, and of
the S machine, which interprets S code that manages task execution on the processors.

Generating nonpreemptive schedules for periodic tasks is NP-hard. However, for E code
that specifies periodic tasks, and S code that specifies a corresponding nonpreemptive schedule,
we show that time safety can be checked in linear time. This suggests the notion of schedule-
carrying code (SCC), where E code is annotated with S code before being sent to an execution
host. The host, if it does not trust the sender, can then check the time safety of the code at a
cost that is far below the cost of generating a feasible schedule.

1 Introduction

Schedule-carrying code (SCC) is real-time code annotated with the description of a schedule that
witnesses the schedulability of the real-time code. Schedulability of a real-time program is the
existence of a scheduler that guarantees the time safety of all executions of the program. Intuitively,
the execution of a real-time program is time-safe if all time-critical components of the program
execute according to their timing constraints. The schedule in SCC is a witness of time safety.
We will argue that, while generating SCC from real-time code may be difficult for non-trivial
scheduling strategies such as non-preemptive or multiprocessor scheduling, checking time safety of
SCC can be easy. As a consequence, SCC can be generated at compile-time when speed is not
of primary concern while the validity of the result can later be verified at runtime prior to the
program execution in order to obtain more confidence in the temporal correctness of the code.

We propose the following format for SCC: (1) the real-time code portion of SCC is E code of the
Embedded Machine [2] and (2) the schedule portion of SCC is S code of the Scheduling Machine,
which we will introduce here. E code is timing code that determines the invocation of (software)
tasks with respect to the occurrences of events such as clock ticks. A task is a sequential program,
e.g., a C procedure, without any internal synchronization mechanisms. A task is preemptable but

∗This research was supported in part by the DARPA SEC grant F33615-C-98-3614, the AFOSR MURI grant
F49620-00-1-0327, the California MICRO grant 01-037, and the NSF grants CCR-0208875 and CCR-0225610.
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has its own memory space. Tasks always operate on mutually disjoint data. E code invokes drivers
to transport data among tasks as well as from tasks to the environment of the system. Similar to
a task, a driver is a sequential program but, unlike a task, is not preemptable and may operate
on any memory. Intuitively, the execution of E code is time-safe if a driver that shares data with
a task is never invoked when that task has already been invoked but not yet completed. S code
is scheduling code that determines the order in which multiple tasks invoked by the Embedded
Machine execute. The purpose of S code is to guarantee the time-safe execution of E code.

In Section 2, we describe the Embedded Machine and define the semantics of E code. The
Scheduling Machine and the semantics of S code is introduced in Section 3. The semantics of
Schedule-Carrying Code is defined in Section 4. In Section 5, we show that the schedulability
problem for E code that describes an arbitrary set of priodic tasks is NP-hard when using a non-
preemptive scheduling strategy. Then we show that the schedulability of SCC generated from a
successful non-preemptive schedulability test of that E code can be checked in linear time in the
size of the E code.

2 The Embedded Machine

The E machine [2] is a virtual machine that mediates between the physical processes and the
software processes of an embedded system through a control program written in E code. E code
triggers the execution of software processes in relation to physical events, such as clock ticks, and
software events, such as task completion. E code is interpreted on the E machine in real time. In
this paper, we restrict our attention to the input-triggered programs of [2]; they are time-live, that
is, all synchronous computation is guaranteed to terminate.

E Code Syntax. The E machine supervises the execution of tasks and drivers that communicate
via ports. A task is application-level code that implements a computation activity. A driver is
system-level code that facilitates a communication activity. A port is a typed variable. Given a set
P of ports, a P state is a function that maps each port p ∈ P to a value of the appropriate type.
The set P is partitioned into three disjoint sets: a set PE of environment ports, a set PT of task
ports, and a set PD of driver ports, updated respectively by the physical environment, by tasks,
and by drivers. The environment ports include pc, a discrete clock. An input event is a change of
value at an environment or task port, say, at a sensor ps. A change of value of the discrete clock is
also called a clock tick. We also say that a change of values at environment (task) ports constitutes
an environment (software) event. An input event is observed by the E machine through an event
interrupt that can be characterized by a predicate, namely, p′s 6= ps, where p′s refers to the current
port reading, and ps refers to the most recent previous port reading. PG ⊆ PE ∪ PT denotes the
environment and task ports that are observed by event interrupts. We call the ports in PG trigger
ports.

All information between the environment and the tasks flows through drivers: environment
ports cannot be read by tasks, and task ports cannot be read by the environment. Formally, a
driver d consists of a set P [d] ⊆ PD of driver ports, a set I[d] ⊆ PE ∪ PT of read environment and
task ports, and a function f [d] from P [d] ∪ I[d] states to P [d] states. A task t consists of a set
P [t] ⊆ PT of task ports, a set I[t] ⊆ PD of read driver ports, and a function f [t] from P [t] ∪ I[t]
states to P [t] states. The E machine handles event interrupts through triggers. A trigger g consists
of a set P [g] ⊆ PG of monitored environment and task ports, and a predicate f [g], which evaluates
to true or false over each pair (s, s′) of P [g] states. We require that f [g] evaluates to false if s = s′.
The state s is the state of the ports at the time instant when the trigger is activated. The state s ′
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is the state of the ports at the time instant when the trigger is evaluated. All active triggers are
logically evaluated with each event interrupt. An active trigger that evaluates to true is enabled,
and may cause the E machine to execute E code. The trigger g is a time trigger if P [g] = {pc} and
f [g] has the form p′c = pc + δ, for some positive integer δ ∈ N >0 . A time trigger monitors only the
clock and specifies an enabling time δ, which is the number of clock ticks after activation before
the trigger is enabled.

The E machine has three non-control-flow instructions. An E instruction is either call(d), for
a driver d; or schedule(t), for a task t; or future(g, a), for a trigger g and an E code address a.
The call(d) instruction invokes the driver d. The schedule(t) instruction schedules the task t
by handing t off to a task scheduler that dispatches the scheduled tasks to execute in some order
after the E machine is finished. The task scheduler could be the scheduler of an operating system.
The future(g, a) instruction marks the E code at address a for possible execution at a future time
when the trigger g becomes enabled. The E machine also has two control-flow instructions: the
conditional jump instruction if(f, a), where f is a predicate over the driver ports PD, and a is the
target address of the jump if f is true; and the termination instruction return, which ends the
execution of E code. Formally, an E program consists of a set P of ports, a set D of drivers, a set T
of tasks, a set G of triggers, a set A of E code addresses, an initial E code address a0 ∈ A, and for
each E code address a ∈ A, an E or control-flow instruction Instruction(a), and a successor address
Next(a). All sets that are part of an E program are finite. We require that E code execution
always terminates, i.e., for each E code address a ∈ A and all branches of if instructions, a return
instruction must be reached in a finite number of steps. The E program is time-triggered if all
triggers g ∈ G are time triggers.

E Code Example. We illustrate the semantics of E code using a simple program with two tasks,
t1 and t2. The task t2 is executed every 10 ms; it reads sensor values using a driver ds, processes
them, and writes its result to an interconnect driver di. The task t1 is executed every 20 ms; it
obtains values from driver di (the result of t2), computes actuator values, and writes to an actuator
driver da. There are two environment ports (the discrete clock pc and a sensor ps), two task ports
(for the results of the two tasks), and three driver ports (the destinations of the drivers). The
following time-triggered E program implements the above behavior:

a0: call(da) a1: call(ds)
call(ds) schedule(t2)
call(di) future(p′c = pc + 10, a0)
schedule(t1) return
schedule(t2)
future(p′c = pc + 10, a1)
return

There are two blocks of E code; the block at a0 is executed initially. The E machine processes each
instruction in logical zero time. First, it calls the driver da and waits until the execution of da is
finished (in logical zero time), and then proceeds immediately to the next instruction. Once ds and
di have been called, all driver ports are updated. Then the E machine schedules the task t1 by
adding a task invocation N of the form ((t1, a[t1], 0),⊥) to the so-called task set, which is initially
empty. a[t1] denotes the initial program counter of t1. 0 is the amount of soft time for which t1
already executed. The ⊥ element is not important here and will be explained later. As we assume
no particular scheduling scheme, we do not know the organization of the task set. If we were to
use the scheduler of an operating system the task set could be represented by the ready queue of
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the operating system. After inserting t1 into the task set, the E machine immediately processes the
next instruction and adds t2 to the task set. Next, it proceeds to the future instruction, which
creates a trigger binding B of the form (p′c = pc + 10, a1, s), where s is the current value of pc,
and appends it to a queue, called trigger queue, of active trigger bindings (initially empty). The
trigger queue ensures that the E machine will execute the E code block at a1 as soon as the trigger
p′c = pc +10 is enabled. For now the E machine proceeds to the return instruction. Since no active
triggers are enabled, the E machine relinquishes control to the task scheduler, which takes over to
schedule the tasks t1 and t2 in the task set. The E machine wakes up again when an input event
occurs that enables an active trigger. In particular, at 10 ms the trigger binding (p′c = pc +10, a1, s)
is removed from the trigger queue, and the E code at address a1 is executed. The execution of
block a1 is similar to that of block a0. The whole process repeats every 20 ms.

The above scenario assumes that the execution of a task has completed before it is scheduled
again, in other words, we need that wcet(t1) + 2 · wcet(t2) ≤ 20, where wcet(t) is the WCET of
task t. This requirement must be checked by the compiler [3].

loop
invoke task dispatcher (Algorithm 2)
invoke E code interpreter (Algorithm 3)
invoke task scheduler (Algorithm 4)

end loop

Algorithm 1: The Embedded Machine

E Code Semantics. The execution of an E program yields an infinite sequence of program
configurations, called trace. Each configuration tracks the values of all ports, the trigger queue, the
task set, and the running task. An E program configuration consists of (1) a P state s′, called port
state; (2) a queue of trigger bindings (g, a, s), called trigger queue, where g is a trigger, a ∈ A is
an E code address, and s is a P [g] state; (3) a set of task invocations ((t, at, δ),⊥), called task set,
where t is a task, at is the program counter of t, and δ is the amount of soft time for which t already
executed (we call (t, at, δ) a task instance of t); and (4) a running task R, where R is either ⊥, or
else of the form (N,⊥) where N is either ⊥ or a task instance. A trigger binding (g, a, s) is enabled
if the trigger predicate p[g] evaluates to true over the pair (s, s′) of P [g] states. The configuration c
is schedule-enabled if the running task of c is ⊥; otherwise, c is schedule-disabled. c is input-enabling
if c is schedule-disabled and the trigger queue contains no enabled trigger bindings; otherwise, c is
input-disabling. We call an input-enabling c idling if the running task of c is of the form (⊥, ·).

We define the semantics of E code operationally using a pseudo-code description of the E ma-
chine. Algorithm 1 shows the main loop of the machine as it executes a given E program. After
entering the main loop, the machine invokes the task dispatcher (Algorithm 2) to dispatch the task
that has been chosen by the task scheduler to execute. Since no task is chosen initially, the task
dispatcher enables the event interrupts and then waits for environment events. The occurrence of
an environment event wakes up the machine, which immediately disables all event interrupts (thus
it is still possible for low-level interrupts to preempt the machine, as long as they do not interfere
with the triggering mechanism of the machine). Then the E machine interpreter (Algorithm 3) is
invoked.

The E machine interpreter runs through the outer while loop of Algorithm 3 as long as there are
enabled trigger bindings in the trigger queue, each time executing a block of E code that is bound to
an enabled trigger. Initially, the trigger queue contains a single trigger binding (true, a0, ∅) where
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a0 is the initial E code address of the E program, and the task set is empty. In the inner while
loop of Algorithm 3, the machine fetches the current instruction from the program, decodes and
executes the instruction, and then determines the address of the next instruction.

After the interpreter is finished executing E code, the task scheduler (Algorithm 4) is invoked
to choose a task from the so-called ready set to execute. Here the ready set is always equivalent
to the task set. The task scheduler Schedule(ReadySet) is free to choose any scheduling scheme
including an idling scheme where no task is chosen although the task set is not empty. The chosen
task becomes the running task, which is dispatched by the task dispatcher to execute until an input
event occurs. Then the task is put back into the task set with its new program counter only when
the task has not yet completed. However, if the task scheduler chooses to idle a running task of
the form (⊥, ·) is returned and no task is dispatched.

if RunningTask = (⊥, ·) then
enable event interrupts
(δ,Γ) := WaitForEnvironmentEvents()
disable event interrupts
if Γ = PortState(PE \ pc) then

PortState(pc) := PortState(pc) + δ
// Configuration: Idle Time Tick

else
PortState(PE \ pc) := Γ
// Configuration: Environment Event

end if
else

((t, at, δ), B) := RunningTask
enable event interrupts
(a′t, δ′,PortState(P [t])) := Dispatch(t, at,PortState(P [t] ∪ I[t]))
disable event interrupts
PortState(pc) := PortState(pc) + δ′

if a′t = ⊥ then
if B = (g, as, s) then

TaskSet := TaskSet ∪ {(⊥, (true, as, s))}
end if
// Configuration: Task Completion

else
TaskSet := TaskSet ∪ {((t, a′t, δ + δ′), B)}
// Configuration: Task Preemption

end if
end if

Algorithm 2: The Task Dispatcher

An initial configuration of an E program Π consists of (1) a P state; (2) the trigger queue
containing a single trigger binding (true, a0, ∅) where a0 is the initial E code address of Π; (3) an
empty task set; and (4) the running task set to (⊥,⊥). A trace of Π is a finite or infinite sequence
of program configurations such that (1) the first configuration is initial and (2) for any two adjacent
configurations c and c′, one of the following holds:

(Environment Event) c is input-enabling and idling, and c′ differs from c at most in the values of
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while there is an enabled trigger in TriggerQueue do
(g, ae, s) := GetFirstEnabledTriggerBinding(TriggerQueue)
TriggerQueue := RemoveFirstEnabledTriggerBinding(TriggerQueue)
ProgramCounter := ae

while ProgramCounter 6= ⊥ do
i := Instruction(ProgramCounter)
if call(d) = i then

PortState(P [d]) := f [d](PortState(P [d] ∪ I[d]))
else if schedule(t) = i then

TaskSet := TaskSet ∪ {((t, a[t], 0),⊥)}
else if future(g, a) = i then

TriggerQueue := TriggerQueue ◦ (g, a,PortState(P [g]))
end if
ProgramCounter := Next(ProgramCounter)

end while
end while
RunningTask := ⊥
// Configuration: E Code Execution

Algorithm 3: The E Code Interpreter

ReadySet := TaskSet ∩ {(N,B)|∀ task instances N ∧ ∀ trigger bindings B with B 6= ⊥}
if ReadySet = ∅ then

ReadySet := TaskSet
end if
RunningTask := Schedule(ReadySet)
if RunningTask 6= (⊥, ·) then

TaskSet := TaskSet \ {RunningTask}
end if
// Configuration: Task Scheduling

Algorithm 4: The Task Scheduler
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environment ports other than pc. In this case, we write e-step(c, c′).

(Idle Time Tick) c is input-enabling and idling, and c′ results from c by incrementing the clock pc.
In this case, we write t-step(c, ∅, c′).

(Task Completion) c is input-enabling and a running task of the form ((t, at, δ),⊥) is scheduled in
c, and c′ results from c by incrementing the clock pc by some amount of time δ′. In addition,
the execution of t results in the program counter ⊥ (task completion) and in a new P [t] state
of c′. In this case, we write t-step(c, t, c′).

(Task Preemption) c is input-enabling and a running task of the form ((t, at, δ),⊥) is scheduled in
c, and c′ results from c by incrementing the clock pc by some amount of time δ′. In addition,
the execution of t results in a new program counter a′t of t that is different from ⊥ and in a
new P [t] state of c′, and the task set of c′ results from c by adding ((t, a′t, δ + δ′),⊥) to the
task set. In this case, we write t-step(c, t, c′).

(E code Execution) c is input-disabling and schedule-disabled, and c′ results from invoking the
E machine interpreter (Algorithm 3) on c.

(Task Scheduling) c is schedule-enabled, and c′ results from invoking the task scheduler (Algo-
rithm 4) on c.

A trace with atomic task execution of Π is a sequence of configurations such that (1) the first
configuration is initial and (2) for any two adjacent configurations c and c′, either (Environment
Event); or (Idle Time Tick); or (Task Completion); or (E code Execution); or (Task Scheduling). In
a trace with atomic task execution, all tasks are executed in zero time without any task preemption.

An E program executes as intended only if the platform offers sufficient performance so that
the computation of a task t always finishes before drivers access task ports of t, and before another
invocation of t is scheduled. A trace that satisfies these conditions is called time safe, because the
outcomes of if instructions cannot be distinguished from a trace with atomic task execution. For-
mally, a configuration c time safe [2] if, for every task t in the task set of c and for every instruction
Instruction(a) that is executed at c, the following two conditions are obeyed: if Instruction(a) =
call(d), then P [d] ∩ I[t] = ∅ and I[d] ∩ P [t] = ∅; and if Instruction(a) = schedule(t′), then
P [t′] ∩ P [t] = ∅. If one of these two conditions is violated, then we say that the configuration c
conflicts with the task t. A trace is time safe if it contains only time-safe configurations.

Given a nonempty finite trace τ , let last(τ) be the final configuration of τ . A scheduling strategy
is a function that maps every nonempty finite trace τ whose final configuration last(τ) is input-
enabling, either to ∅ (meaning that no task is scheduled), or to some ready task t ∈ T last(τ). An
infinite trace τ = c0c1c2 . . . is an outcome of the scheduling strategy σ if for all nonempty finite
prefixes τ ′ = c0 . . . cj of τ , if cj is input-enabling, then either e-step(cj , cj+1) or t-step(cj , σ(τ ′), cj+1).
The E program Π is schedulable for the WCET map wcet if there exists a scheduling strategy σ
such that all infinite traces of (Π, wcet) that are outcomes of σ are time safe. The schedulability
problem for E code asks, given an E program Π and a WCET map wcet for Π, if Π is schedulable
for wcet.

3 The Scheduling Machine

The Scheduling Machine (S machine) is a virtual machine that schedules software processes to
execute according to an S code program. S code consists of instructions to execute a task (or to
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idle) until a physical event, such as a clock tick, or a software event, such as the task completion,
occurs.

S Code Syntax. The S machine schedules the execution of tasks. The S machine has five non-
control-flow instructions. An S instruction is either call(d), for a driver d; or schedule(t), for
a task t; or dispatch(t, g), for a task t and a trigger g; or idle(g), for a trigger g; or fork(a)
for an S code address a. The call and schedule instructions are equivalent to the corresponding
E instructions of the E machine. The dispatch(t, g) instruction dispatches the task t to execute
until either t completes or the trigger g is enabled, whatever comes first. The S machine yields
to t after executing the dispatch(t, g) instruction. The idle(g) instruction idles the S machine
until the trigger g is enabled. The fork(a) instruction marks the S code at address a for execution
in parallel to the current control flow. The S machine has only a single control-flow instruction:
the termination instruction return, which ends the execution of S code. The S machine may have
other control-flow instructions such as a conditional jump instruction in order to describe dynamic
scheduling schemes. Without any additional control-flow instructions we call S code static since it
can only describe static schedules. In this paper, we focus on static S code. Formally, an S program
consists of a set P of ports, a set D of drivers, a set T of tasks, a set G of triggers, a set A of S code
addresses, an initial S code address a0 ∈ A, and for each S code address a ∈ A, an S or control-flow
instruction Instruction(a), and a successor address Next(a). All sets that are part of an S program
are finite. We require that S code execution always eventually yields or terminates, i.e., for each
S code address a ∈ A, either a dispatch or an idle instruction, or else a return instruction must
be reached in a finite number of steps. The S program is time-triggered if all triggers g ∈ G are time
triggers and if all instructions that immediately precede a fork instruction are idle instructions.

S Code Example. We illustrate the semantics of S code using the program of Section 2 with
the two tasks t1 and t2. Recall that the task t2 is executed every 10 ms whereas the task t1 is
executed every 20 ms. The following time-triggered S program implements this behavior, which is
equivalent to the behavior of the E program in Section 2:

a0: call(da)
call(ds)
call(di)
schedule(t1)
schedule(t2)
dispatch(t2)

a1: dispatch(t1)
idle(p′c = pc + 10)

a2: call(ds)
schedule(t2)
dispatch(t2)
idle(p′c = pc + 20)
fork(a0)
return

There is one block of S code with the initial S code address a0. We also call a block of S code a
thread. The S machine processes each instruction in logical zero time. The first five instructions are
executed in the same way the E machine executes them. Then, the S machine proceeds to the first
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dispatch(t2) instruction, which replaces the task invocation ((t2, a[t2], 0),⊥) created by the preced-
ing schedule(t2) instruction by a so-called thread instance of the form ((t2, a[t2], 0), (false, a1, s)),
where s is the value of pc when the S machine began executing at a0. Note that a dispatch(t)
instruction is an abbreviation for dispatch(t, false). The new thread instance of a1 ensures that
the S machine will execute the S code block at a1 as soon as task t2 completes. For now the
S machine yields to t2. When t2 completes, the S machine wakes up, removes the thread instance
from the task set, and then executes the dispatch(t1) instruction at a1 in a similar way. After
t1 completes, the S machine proceeds to the idle(p′c = pc + 10) instruction, which creates in the
task set a thread instance of the form (⊥, (p′c = pc + 10, a2, s)), which we also call an idle phase,
where s is again the value of pc when the S machine began executing at a0. Now, the S machine
idles until the trigger p′c = pc + 10 is enabled at 10 ms. Then the idle phase is removed from the
task set and the S code at address a2 is executed in a similar way than the previous S code. At
20 ms, the S machine executes the fork(a0) instruction, which creates in the task set a (zero) idle
phase of the form (⊥, (true, a0, s

′)), where s′ is the current port state of all trigger ports PG of the
S program. Thus the fork(a0) instruction starts a new instance of the thread at a0. The following
return instruction terminates the current thread. Then the S machine immediately removes the
(zero) idle phase from the task set and starts executing the S code at a0. The whole process repeats
every 20 ms.

The above scenario assumes that the execution of both tasks completes within 10 ms. In other
words, we need that wcet(t1)+wcet(t2) ≤ 10, where wcet(t) is the WCET of task t. We call S code
in which task execution must neither be preempted by S code nor other tasks synchronous. The
following time-triggered S program implements again the above behavior where, however, task t1

may be preempted by S code and by task t2:

a0: call(da)
call(ds)
call(di)
schedule(t1)
schedule(t2)
dispatch(t2)

a1: dispatch(t1, p′c = pc + 10)
a2: idle(p′c = pc + 10)

call(ds)
schedule(t2)
dispatch(t2)
dispatch(t1)
idle(p′c = pc + 20)
fork(a0)
return

The dispatch instruction at address a1 creates a thread instance of the form ((t1, a[t1]), (p′c = pc +
10, a2, s)), where s is again the value of pc when the S machine began executing at a0. If t1 completes
before 10 ms elapsed the S machine will proceed to the subsequent idle instruction and idle until
the 10 ms elapsed. Technically, when t1 completes, the task dispatcher replaces the above thread
instance in the task set by an enabled thread instance of the form ((t1,⊥), (true, a2, s)), which makes
the S machine immediately proceed to the idle instruction at a2. On the other hand, if t1 does not
complete before 10 ms elapsed t1 gets preempted by the S machine. Then the above thread instance
is removed from the task set and the idle instruction at a2 is executed. Since 10 ms already elapsed
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the idle instruction creates an already enabled thread instance, which makes the S machine proceed
immediately to the following call instruction. Thus the subsequent dispatch(t2) instruction may
execute task t2 before task t1 completed. Then the following dispatch(t1) instruction executes t1
or, if t1 has already completed, proceeds immediately to the idle instruction to wait for the next
20 ms instant.

The above scenario assumes that the execution of a task has completed before it is scheduled
again but not necessarily before other tasks are dispatched. In other words, we need that wcet(t1)+
2 · wcet(t2) ≤ 20, where wcet(t) is the WCET of task t. We call S code in which task execution
may be preempted by S code and other tasks preemptive. The following time-triggered S program
implements again the above behavior where, however, task t1 may be preempted by S code but not
by task t2:

a0: call(da)
call(ds)
call(di)
schedule(t1)
schedule(t2)
dispatch(t2)

a1: dispatch(t1, p′c = pc + 10)
a2: idle(p′c = pc + 10)

call(ds)
schedule(t2)
dispatch(t1)
dispatch(t2)
idle(p′c = pc + 20)
fork(a0)
return

The only difference of this S code block to the previous block is the order of the last two dispatch
instructions. Instead of dispatching t2 even before t1 may have completed, t1 is dispatched again
at the 10 ms instant. Then, after t1 completes, t2 is dispatched. Thus we assume again that
the execution of a task has completed before it is scheduled again but in addition we assume
that each task completes before another task is dispatched. In other words, we again need that
wcet(t1) + 2 · wcet(t2) ≤ 20, where wcet(t) is the WCET of task t, and that tasks do not preempt
each other. We call S code in which task execution may be preempted by S code but not by other
tasks non-preemptive.

S Code Semantics. The execution of an S program yields an infinite sequence of program
configurations, called trace. Each configuration tracks the values of all ports, the task set, and
the running task. An S program configuration consists of (1) a P state s′, called port state; (2) a
set of task invocations and thread instances (N, (g, a, s)), called task set, where N is either a task
instance or ⊥ and (g, a, s) is a trigger binding in which g is a trigger, a ∈ A is an S code address,
and s is a PG state (if N is ⊥ we call the thread instance an idle phase); and (3) a running task R,
where R is either ⊥, or else of the form (N,⊥) where N is either ⊥ or a task instance. A thread
instance (N, (g, a, s)) is enabled if the trigger predicate p[g] evaluates to true over the pair (s, s ′)
of P [g] states. The configuration c is schedule-enabled if the running task of c is ⊥; otherwise, c is
schedule-disabled. c is input-enabling if c is schedule-disabled and the task set contains no enabled
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thread instances; otherwise, c is input-disabling. We call an input-enabling c idling if the running
task of c is of the form (⊥, ·).

We define the semantics of S code operationally using a pseudo-code description of the S ma-
chine. Algorithm 5 shows the main loop of the machine as it executes a given S program. Al-
gorithm 5 is similar to Algorithm 1. Instead of using the E machine interpreter we now use the
S machine interpreter (Algorithm 6). The task dispatcher and task scheduler can be reused from
the E machine. Similar to the E machine, after entering the main loop, the S machine invokes
the task dispatcher to dispatch the task that has been chosen by the task scheduler to execute.
Since no task is chosen initially, the task dispatcher enables the event interrupts and then waits
for environment events. The occurrence of an environment event wakes up the machine, which
immediately disables all event interrupts. Then the S machine interpreter is invoked.

The S machine interpreter runs through the outer while loop of Algorithm 6 as long as there
are enabled thread instances in the task set, each time executing a thread of S code that is
bound to an enabled thread instance. Initially, the task set contains a single thread instance
(⊥, (true, a0,PortState(PG))) where a0 is the initial S code address of the S program. In the inner
while loop of Algorithm 6, the machine fetches the current instruction from the program, decodes
and executes the instruction, and then determines the address of the next instruction.

Similar to the E machine, after the interpreter is finished executing S code, the task scheduler
is invoked to choose a task from the ready set to execute. Unlike in the E machine, the ready
set contains only the thread instances of the task set, unless there are no thread instances in the
task set. In this case, the ready set is equivalent to the task set. This gives priority to thread
instances over task invocations. As before, the task scheduler Schedule(ReadySet) is free to choose
any scheduling scheme including an idling scheme where no task is chosen although the task set is
not empty. The chosen task becomes the running task, which is dispatched by the task dispatcher
to execute until an input event occurs. Then the task is put back into the task set with its new
program counter only when the task has not yet completed. If the task has completed and it was
part of a thread instance, an enabled idle phase is inserted into the task set to make the S machine
continue the thread. However, if the task scheduler chooses to idle a running task of the form (⊥, ·)
is returned and no task is dispatched.

loop
invoke task dispatcher (Algorithm 2)
invoke S code interpreter (Algorithm 6)
invoke task scheduler (Algorithm 4)

end loop

Algorithm 5: The Scheduling Machine

An initial configuration of an S program Π consists of (1) a P state; (2) the task set containing
a single thread instance (⊥, (true, a0,PortState(PG))) where a0 is the initial S code address of Π;
and (3) the running task set to (⊥,⊥). A trace of Π is a finite or infinite sequence of program con-
figurations such that (1) the first configuration is initial and (2) for any two adjacent configurations
c and c′, one of the following holds:

(Environment Event) c is input-enabling and idling, and c′ differs from c at most in the values of
environment ports other than pc. In this case, we write e-step(c, c′).

(Idle Time Tick) c is input-enabling and idling, and c′ results from c by incrementing the clock pc.
In this case, we write t-step(c, ∅, c′).
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while there is an enabled thread in TaskSet do
(N, (g, as, s)) := ChooseEnabledThreadInstance(TaskSet)
TaskSet := TaskSet \ (N, (g, as, s))
if N 6= ⊥ then

TaskSet := TaskSet ∪ {(N,⊥)}
end if
ProgramCounter := as; Yield := false
while ProgramCounter 6= ⊥ do

i := Instruction(ProgramCounter)
if call(d) = i then

PortState(P [d]) := f [d](PortState(P [d] ∪ I[d]))
else if schedule(t) = i then

TaskSet := TaskSet ∪ {((t, a[t], 0),⊥)}
else if dispatch(t, g) = i then

if there is a task invocation ((t, at, δ),⊥) in TaskSet then
TaskSet := (TaskSet \ {((t, at, δ),⊥)}) ∪ {((t, at, δ), (g,Next(ProgramCounter), s))}
Yield := true

end if
else if idle(g) = i then

TaskSet := TaskSet ∪ {(⊥, (g,Next(ProgramCounter), s))}
Yield := true

else if fork(a) = i then
TaskSet := TaskSet ∪ {(⊥, (true, a,PortState(PG)))}

end if
if Yield then

ProgramCounter := ⊥
else

ProgramCounter := Next(ProgramCounter)
end if

end while
end while
RunningTask := ⊥
// Configuration: S Code Execution

Algorithm 6: The S Code Interpreter
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(Task Completion) c is input-enabling and a running task of the form ((t, at, δ), B) is scheduled in
c, and c′ results from c by incrementing the clock pc by some amount of time δ′. In addition,
the execution of t results in the program counter ⊥ (task completion) and in a new P [t]
state of c′, and, if B is a trigger binding (g, as, s), the task set of c′ results from c by adding
(⊥, (true, as, s)) to the task set. In this case, we write t-step(c, t, c′).

(Task Preemption) c is input-enabling and a running task of the form ((t, at, δ), B) is scheduled in
c, and c′ results from c by incrementing the clock pc by some amount of time δ′. In addition,
the execution of t results in a new program counter a′t of t that is different from ⊥ and in a
new P [t] state of c′, and the task set of c′ results from c by adding ((t, a′t, δ + δ′), B) to the
task set. In this case, we write t-step(c, t, c′).

(S code Execution) c is input-disabling and schedule-disabled, and c′ results from invoking the
S machine interpreter (Algorithm 6) on c.

(Task Scheduling) c is schedule-enabled, and c′ results from invoking the task scheduler (Algo-
rithm 4) on c.

4 Schedule-Carrying Code

In this section, we introduce the notion of schedule-carrying code. In general, the time-safe execu-
tion of an E program requires a system scheduler to determine the order in which tasks triggered
by the E program are executed. However, a system scheduler can also be replaced or at least sim-
plified when using the S machine. S code determines the order in which tasks execute. For a given
E program and given platform constraints (e.g., WCETs), S code may be generated according to
any scheduling strategy at compile time (static scheduling), at runtime (dynamic scheduling), or
even partially at compile time and completed at runtime. S code may then serve as (1) a witness of
time-safety of a given E program and (2) an executable representation of a schedule. If the S code
dispatches at most a single task at any moment in time, a system scheduler will not be necessary
anymore. Thus the S machine is a possible alternative to a system scheduler. We argue that gener-
ating S code is difficult in the presence of non-trivial platform constraints such as nonpreemptable
tasks while checking time safety of E code annotated with S code is simple. We therefore call an
E program annotated with an S program schedule-carrying code (SCC).

SCC Example. We illustrate the semantics of SCC by combining the E program of Section 2
with a version of the non-preemptive S program of Section 3 that does not contain any of the call
and schedule instructions. The following time-triggered SCC program implements the triggering
behavior of the E program and the non-preemptive scheduling behavior of the S program:

a0: call(da) a1: call(ds) a′0: dispatch(t2)
call(ds) schedule(t2) dispatch(t1, p′c = pc + 10)
call(di) future(p′c = pc + 10, a0) idle(p′c = pc + 10)
schedule(t1) return a′1: dispatch(t1)
schedule(t2) dispatch(t2)
future(p′c = pc + 10, a1) idle(p′c = pc + 20)
return fork(a′0)

return
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The two E code blocks at a0 and a1 are equivalent to the E code blocks in Section 2. The E code
address a0 is the initial E code address of the SCC program. In addition, there is one block of S code
at a′0, which is the initial S code address of the SCC program. The execution of the SCC program
starts with the E code block at a0. When the E machine is finished executing this block, the
S machine starts executing the S code block at a′0. After dispatching task t2 and then t1, the
S machine gets preempted by the E machine at the 10 ms instant. Then the E machine executes
the E code block at a1. Subsequently, the S machine continues to execute the S code at a′1. At
the 20 ms instant, the E machine wakes up and starts a new round by executing the E code block
at a0.

SCC Semantics. An SCC program consists of an E program and an S program that may share
ports, drivers, tasks, and triggers. An SCC program is time-triggered if the E program and the
S program are time-triggered. The execution of an SCC program yields an infinite sequence of
program configurations, called trace. Each configuration tracks the values of all ports, the trigger
queue, the task set, and the running task. An SCC program configuration consists of (1) a P
state s′, called port state; (2) a queue of trigger bindings (g, a, s), called trigger queue, where g
is a trigger, a ∈ A is an E code address, and s is a P [g] state; (3) a set of task invocations and
thread instances (N, (g, a, s)), called task set, where N is either a task instance or ⊥ and (g, a, s)
is a trigger binding in which g is a trigger, a ∈ A is an S code address, and s is a PG state (if N
is ⊥ we call the thread instance an idle phase); and (4) a running task R, where R is either ⊥,
or else of the form (N,⊥) where N is either ⊥ or a task instance. A thread instance (N, (g, a, s))
is enabled if the trigger predicate p[g] evaluates to true over the pair (s, s′) of P [g] states. The
configuration c is schedule-enabled if the running task of c is ⊥; otherwise, c is schedule-disabled. c
is input-enabling if c is schedule-disabled, the trigger queue contains no enabled trigger bindings,
and the task set contains no enabled thread instances; otherwise, c is input-disabling. We call an
input-enabling c idling if the running task of c is of the form (⊥, ·).

We define the semantics of SCC code operationally using a pseudo-code description of the
SCC machine. Algorithm 7 shows the main loop of the machine as it executes a given SCC pro-
gram. Similar to the E and S machines, after entering the main loop, the SCC machine invokes
the task dispatcher to dispatch the task that has been chosen by the task scheduler to execute.
Since no task is chosen initially, the task dispatcher enables the event interrupts and then waits
for environment events. The occurrence of an environment event wakes up the machine, which
immediately disables all event interrupts. Then the E machine interpreter is invoked followed by
the S machine interpreter. Finally, the task scheduler chooses a task to execute.

loop
invoke task dispatcher (Algorithm 2)
invoke E code interpreter (Algorithm 3)
invoke S code interpreter (Algorithm 6)
invoke task scheduler (Algorithm 4)

end loop

Algorithm 7: The SCC Machine

An initial configuration of an SCC program Π consists of (1) a P state; (2) the trigger queue
containing a single trigger binding (true, a0, ∅) where a0 is the initial E code address of Π; (3) the
task set containing a single thread instance (⊥, (true, a′0,PortState(PG))) where a′0 is the initial
S code address of Π; and (4) the running task set to (⊥,⊥). A trace of Π is a finite or infinite
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sequence of program configurations such that (1) the first configuration is initial and (2) for any
two adjacent configurations c and c′, one of the following holds:

(Environment Event) c is input-enabling and idling, and c′ differs from c at most in the values of
environment ports other than pc. In this case, we write e-step(c, c′).

(Idle Time Tick) c is input-enabling and idling, and c′ results from c by incrementing the clock pc.
In this case, we write t-step(c, ∅, c′).

(Task Completion) c is input-enabling and a running task of the form ((t, at, δ), B) is scheduled in
c, and c′ results from c by incrementing the clock pc by some amount of time δ′. In addition,
the execution of t results in the program counter ⊥ (task completion) and in a new P [t]
state of c′, and, if B is a trigger binding (g, as, s), the task set of c′ results from c by adding
(⊥, (true, as, s)) to the task set. In this case, we write t-step(c, t, c′).

(Task Preemption) c is input-enabling and a running task of the form ((t, at, δ), B) is scheduled in
c, and c′ results from c by incrementing the clock pc by some amount of time δ′. In addition,
the execution of t results in a new program counter a′t of t that is different from ⊥ and in a
new P [t] state of c′, and the task set of c′ results from c by adding ((t, a′t, δ + δ′), B) to the
task set. In this case, we write t-step(c, t, c′).

(E code Execution) c is input-disabling and schedule-disabled, there are enabled trigger bindings
in c, and c′ results from invoking the E machine interpreter (Algorithm 3) on c.

(S code Execution) c is input-disabling and schedule-disabled, there are no enabled trigger bindings
but enabled thread instances in c, and c′ results from invoking the S machine interpreter
(Algorithm 6) on c.

(Task Scheduling) c is schedule-enabled, and c′ results from invoking the task scheduler (Algo-
rithm 4) on c.

5 Non-Preemptive Scheduling for E Code

In this section we discuss a potential application of the SCC on a real time system for which the
execution of a requested task not only must be completed before its deadline, but is also required
not to be preempted. Non-preemptive scheduling may be preferred solution for addressing the
problem of shared resources and critical sections, it reduces task switching overhead and for some
applications task preemption is even not allowed. Unfortunately, it is well known that generating
non-preemptive code is computationally hard even for uniprocessor scheduling and is usually treated
by branch-and-bound algorithms with exponential complexity in the worst case. Only recently, the
researchers have shown that problem remains NP-hard even for some simple classes of task sets.
The problem of testing the feasibility of a set of periodic tasks with arbitrary arrival times was
shown to be NP-hard in the strong sense in [4]. The hardness result for the case where all tasks
have the same arrival time was presented in [1]. Even the case when a period πi of each task
ti from a task set is characterised by a relation πi = 2jπ0, where j is an integer and π0 is the
smallest period in the task set, turned out to be NP-hard in the strong sense [5]. In this section
we argue that once the schedule has been generated and represented by S code part of the SCC it
can be efficiently checked for deadline and non-preemption requirements. At the end we show that
similar proposition holds if input task set is specified in the high level language such as Giotto. We
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start with some basic scheduling terminology and with the hardness result for a non-preemptive
scheduling problem that motivates this section.

Non-preemptive Scheduling Problem. A periodic task t is given with a 3-tuple t = (a, π, wcet),
where a is the arrival time of t, π is the period of t and wcet is the worst case execution time of
t. The arrival time of the j-th request for processing of the task t is a + (j − 1)π, and its deadline
is a + jπ. Given a set of periodic tasks Tasks to be executed on a single processor, a schedule is
a function that maps processing time units to requests of the tasks in Tasks. For non-preemptive
scheduling, a schedule is valid if processing of each request of each task from Tasks:

1. starts on or after the request arrival,

2. is not preempted for the task worst case execution time, and

3. terminates on or before the request deadline.

The task set Tasks is said to be feasible if there exists a valid schedule for it.
Cai and Kong [1] have shown the following scheduling problem to be NP-hard in the strong

sense.

NSPT Problem Non-preemptive scheduling of a simply periodic task set.

Instance A set of non-preemptible periodic tasks Tasks = {t1, t2, ..., tn} to be executed on a single
processor. The arrival of each task ti is zero, i.e. ti = (0, πi, wceti). The periods of the
tasks satisfy relation πi+1 = Kiπi for 1 ≤ i ≤ n− 1 (simply periodic task set). The numbers
πi, wceti (1 ≤ i ≤ n), and Ki (1 ≤ i ≤ n− 1) are assumed to be positive integers.

Question Is the task set Tasks feasible?

It is clear that the same hardness result holds if we keep task arrival times at zero, but allow
arbitrary task periods. In the next subsection we define a subclass of time-triggered E programs,
the class of periodic E programs P such that each E program Πe ∈ P describes requests of an
instance of a such periodic task set. For the purposes of this section we define the class with
respect to the set of E program addresses, and Instruction and Next function part of an E program
definition. Given a periodic E program Πe ∈ P we next define a subclass S(Πe) of time-triggered
S programs, the class of S programs SCC compliant with Πe. Such a class of programs describes
all, for the purposes of this paper, interesting schedules of the Tasks set, while keeping the size of
each program in it bounded with the size of Πe.

Non-preemptive Scheduling for E Code. Let for a set of periodic tasks Tasks = {t1, t2, ..., tn}
the arrival of each task ti be zero, i.e. ti = (0, πi, wceti). This assumption allows analysis to be
performed up to π = lcm(π1, π2, ..., πn) time units, where lcm stands for the least common multiple
function. If γ = lcd(π1, π2, ..., πn) is the least common divisor of the task periods and if k = π/γ,
each request for a task execution in the interval [0, π) is issued at a time instant jγ for some integer
j, 0 ≤ j ≤ k − 1. An E program Πe ∈ P consists of k E code blocks Πe

j for 0 ≤ j ≤ k − 1. Let, for
0 ≤ j ≤ k− 1, Tasksj = {ti ∈ Tasks | jγ mod πi = 0} be the set of all tasks reqested at time jγ and
let ne

j = |Tasksj | (0 ≤ ne
j < n). For 0 ≤ j ≤ k − 1 we define a set of addresses for E code block Πe

j

with Ae
j = {ae

j,i | 0 ≤ i ≤ ne
j + 1}. Each block Πe

j is contained of a sequence of ne
j schedule, one

future and one return instruction in the specified order. The set of addresses of the E program Πe

is given with Ae =
⋃

0≤j≤k−1 Ae
j . The initial address of Πe is ae

0,0. The successor address function
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satisfies Next(ae
j,i) = ae

j,i+1 if 0 ≤ i < ne
j + 1 and Next(ae

j,ne
j+1) = ⊥. For 0 ≤ j ≤ k − 1 the

instruction function Instruction satisfes the following three conditions:

1. for each t ∈ Tasksj there is an integer i such that 0 ≤ i < ne
j and Instruction(ae

j,i) = schedule(t),

2. if 0 ≤ j < k − 1 then Instruction(ae
j,ne

j
) = future(p′c = pc + γ, ae

j+1,0);
in addition Instruction(ae

k−1,ne
k−1

) = future(p′c = pc + γ, ae
0,0),

3. Instruction(ae
j,ne

j+1) = return.

An S program Πs from S(Πe) consists of k S code blocks Πs
j for 0 ≤ j ≤ k − 1. Each block

Πs
j is contained of a sequence of nd

j dispatch instructions that are separated by at most one idle
instruction, and ends with one idle, one fork and one return instruction in the specified order.
A trigger g in a schedule or idle instruction is a time trigger specified with an integer ∆, i.e. g
is enabled if p′c ≥ pc + ∆. If the size of the S code block Πs

j is ns
j we have that ns

j ≤ 2nd
j + 3. For

0 ≤ j ≤ k − 1 we define a set of addresses for S code block Πs
j with As

j = {as
j,i | 0 ≤ i ≤ ns

j − 1}.
The set of addresses of the S program Πs is given with As =

⋃
0≤j≤k−1 As

j . The initial address
of Πs is as

0,0. The successor address function satisfies Next(as
j,i) = as

j,i+1 if 0 ≤ i < ns
j − 1 and

Next(as
j,ns

j−1) = ⊥. The instruction function Instruction satisfes the following five conditions:

1. if for some t ∈ Tasks , some trigger g, 0 ≤ j < k − 1 and 0 ≤ i < ns
j − 3, Instruction(as

j,i) =
dispatch(t, g) then for some t′ ∈ Tasks and trigger g′, Instruction(as

j,i+1) = dispatch(t′, g′)
or Instruction(as

j,i+1) = idle(g′),

2. if for some trigger g, 0 ≤ j < k − 1 and 0 ≤ i < ns
j − 3, Instruction(as

j,i) = idle(g) then for
some t′ ∈ Tasks and trigger g′, Instruction(as

j,i+1) = dispatch(t′, g′),

3. Instruction(as
j,ns

j−3) = idle(g) for some trigger g,

4. if 0 ≤ j < k−1 then Instruction(as
j,ns

j−2) = fork(as
j+1,0); in addition Instruction(as

k−1,ns
k−1−2) =

fork(as
0,0),

5. Instruction(as
j,ns

j−1) = return.

Lastly, in order for the S program Πs to be SCC compliant with the E program Πe, we additionally
require that the numbers of dispatch and schedule instructions, nd

j and ns
j , and the number of E

(and S) code blocks k satisfy the condition

k∑

j=0

nd
j ≤

k∑

j=0

ne
j + k. (1)

The size of an S program Πs that satisfies the last condition is linear in the size of the E program
Πe. On the other hand, this condition allows execution of tasks that are preempted by some or
even all k E code blocks Πe

j . For the case of non-preemptive schedules, no task may be preempted
by any other task, so no task may be dispatched twice in the same S code block. Therefore, a
class of S programs that describes such schedules satisfies the condition 1. Checking if a given E
program is periodic or if a given S program is SCC compliant with a given E program requires time
linear in the size of the programs. Therefore, in the rest of this section we assume that only E and
S programs that passed these tests may be input programs of the algorithm that we discuss next.
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ETime := 0; ∆ETime := 0; Period := 0
RunningTask := (⊥, ·); Preempted := false
ae := ae

0,0

TaskSet := {(⊥, (true, as
0,0, ET ime))}

while Period < 2 do
invoke task dispatch checker (Algorithm 9)
invoke E code checker (Algorithm 10)
invoke S code checker (Algorithm 11)
if TaskSet 6= ∅ then

RunningTask := GetTask(TaskSet)
else

RunningTask := (⊥, ·)
end if

end while
return ACCEPT

Algorithm 8: The Non-preemptive SCC Checker

The Algorithm 8 shows the main loop of the procedure for checking validity and non-preemption
of the schedule for the schedule-carrying code Π consisting of a periodic E program Πe ∈ P and
an S program Πs ∈ S(Πe). We assume that ae

0,0 and as
0,0 are initial addresses of Ae and As

respectively, and that wcet is the worst case execution map. The structure of the Algorithm 8
is very similar to the main loop of the SCC Machine Algorithm 7. It follows the same steps
by simulating task dispatching (Algorithm 9), E code interpretation (Algorithm 10), and S code
interpretation (Algorithm 11). Since S programs from S(Πe) describe only static schedules, i.e.
at any time there is at most one enabled thread instance, invocation of the task scheduler from
the SCC machine algorithm is replaced with the simple GetTask call. While thread instances in
TaskSet are manipulated in the same manner as for the SCC machine, the trigger queue is not
used, since at any time only one trigger is activated due to a single future instruction in each E
code block. Instead, the algorithm keeps the time of the last E machine interpreter invocation in
the ETime variable, periodically updating it with ∆ETime time units remembered from the last
future instruction. To verify the schedule it is enough to check its validity in the interval [0, π],
including the π instant since all of the periodic tasks have their deadlines at that time. At the same
time E machine interpreter would again execute E code at the address ae

0,0, so we use a variable
Period, a counter variable for the executions of the instruction at ae

0,0, as a test for the completion
of the check in case of accepting the schedule as a valid one. The variable STime keeps track of the
times in which task dispatcher would have been invoked. To compute the next dispatching time
NextST ime, the Algorithm 9 uses the current data of the running task t: the time δ for which t
already executed from the task instance, and the trigger g and the time s of the activation of g
from the trigger binding. NextST ime is determined by the first event that would have come: g
becomes enabled (s + ∆), the execution of t is completed (STime + wcet(t)− δ), or E machine is
invoked (ETime+∆ETime). In all cases the new time for which task t would have been executed
up to that instant is updated in the task instance. Since no task actually executes the stored value
for the program counter at is irrelevant. The Algorithm 10 is executed if E machine should have
been invoked, i.e. when STime = ETime + ∆ETime. When E code interpretation loop decodes
schedule(t) instruction, it checks whether an instance of the same task t is already in the TaskSet.
If it is, the execution of t for its previous request could not have been completed, time safety is

18



if RunningTask = (⊥, B) then
if B = (p′c ≥ pc + ∆, as, s) then

NextST ime := min(s + ∆, ETime + ∆ETime)
// Configuration: Idle Time Tick

else
NextST ime := ETime + ∆ETime
// Configuration: Environment Event

end if
else

((t, at, δ), (g, as, s)) := RunningTask
if Preempted and δ = 0 then

// ∃t′. (((t′, ·, δ′), ·) ∈ TaskSet ∧ t′ 6= t ∧ δ′ > 0)
// Non-preemption Violation
return REJECT

end if
if g = (p′c ≥ pc + ∆) then

NextST ime := min(s + ∆, STime + wcet(t)− δ, ETime + ∆ETime)
else

NextST ime := min(STime + wcet(t)− δ, ETime + ∆ETime)
end if
if NextST ime = STime + wcet(t)− δ then

TaskSet := TaskSet ∪ {(⊥, (true, as, s))}
Preempted := false
// Configuration: Task Completion

else
TaskSet := TaskSet ∪ {((t, at, δ + NextST ime− STime), (g, as, s))}
Preempted := true
// Configuration: Task Preemption

end if
end if
STime := NextST ime

Algorithm 9: The Task Dispatch Checker
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if STime = ETime + ∆ETime then
ETime := ETime + ∆ETime
ProgramCounter := ae

if ProgramCounter = ae
0,0 then

Period := Period + 1
end if
while ProgramCounter 6= ⊥ do

i := Instruction(ProgramCounter)
if schedule(t) = i then

if ((t, ·, ·), ·) ∈ TaskSet then
return REJECT
// Deadline Violation

end if
TaskSet := TaskSet ∪ {((t, a[t], 0),⊥)}

else if future(p′c = pc + ∆, a) = i then
∆ETime := ∆; ae := a

end if
ProgramCounter := Next(ProgramCounter)

end while
end if
RunningTask := ⊥

Algorithm 10: The E Code Checker

violated and the algorithm terminates by rejecting Π. If it is not, there is a new request for t,
so it is inserted in the TaskSet with zero time executed so far. Non-preemption violation could
be similarly tested when dispatching a task t in the Algorithm 9, by checking if any other t ′ in
TaskSet already started its execution (δ′ > 0). However, in order to make each execution of the
Algorithm 9 independant of the number of tasks in TaskSet, even constant in time, we use a boolean
variable Preempted to keep track if the task that was last dispatched completed its execution or
was preempted. Non-preemption violation is detected when a first dispatch of a task invocation
(δ = 0) occurs while Preempted is true. The Algorithm 11 is the same as S code interpreter part of
the SCC machine, except for the control-flow optimizations due to the fact that at any time there
is at most one enabled thread instance.

Proposition 5.1
Let a schedule-carrying code Π be given with a periodic E program Πe ∈ P and an S program SCC
compliant with Πe. Let the worst case execution map for tasks in Π be wcet. Checking if Π is time
safe for wcet map and if no task preempts any other task can be done in time linear in the size of
the E program Πe, i.e. in O(|Πe|) time.

Proof Let k be the number of E (and S) code blocks. The worst case running time is achieved if the
algorithm accepts the schedule after the variable Period becomes 2. Before that the Algorithm 10 is
executed exactly k+1 times, each time starting from the address ae

jmodk,0, 0 ≤ j < k+1. Therefore,
each E program instruction is decoded at most twice and since processing of each instruction takes
constant time, the total time spent in the Algorithm 10 is O(|Πe|). The while loop in the Algorithm
11 runs until dispatch(·, g) or idle(g) instruction is decoded with a trigger g not enabled. Since
thread continuation is achieved through fork instruction, similarly as for an E program instruction,
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if there is an enabled thread in TaskSet then
(N, (g, as, s)) := GetEnabledThreadInstance(TaskSet)
TaskSet := TaskSet \ (N, (g, as, s))
if N 6= ⊥ then

TaskSet := TaskSet ∪ {(N,⊥)}
end if
ProgramCounter := as; Yield := false
while ProgramCounter 6= ⊥ do

Reset := false
i := Instruction(ProgramCounter)
if dispatch(t, g) = i then

if there is a task invocation ((t, at, δ),⊥) in TaskSet and g is not enabled then
TaskSet := (TaskSet \ {((t, at, δ),⊥)}) ∪ {((t, at, δ), (g,Next(ProgramCounter), s))}
Yield := true

end if
else if idle(g) = i then

if g is not enabled then
TaskSet := TaskSet ∪ {(⊥, (g,Next(ProgramCounter), s))}
Yield := true

end if
else if fork(a) = i then

s := ETime
Reset := true
ProgramCounter := a

end if
if Yield then

ProgramCounter := ⊥
else if not Reset then

ProgramCounter := Next(ProgramCounter)
end if

end while
end if
RunningTask := ⊥

Algorithm 11: The S Code Checker
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we have that each S program instruction is decoded at most twice and processed in constant time.
Finally, the Algorithm 9 runs in constant time at most once per S program instruction. Since the
condition 1 requires the size of S program to be bounded by the size of E program, the whole
Algorithm 8 runs in time linear in the size of the E program. �

Non-preemptive Scheduling for Giotto. We conclude the section by showing that similar
complexity gap between generating and checking a non-preemptive schedule exists if the task set
description is given in the Giotto programming language [3].

NSGP Problem Non-preemptive scheduling of a single mode Giotto program.

Instance A Giotto program ΠG with a single mode m. A period of the mode m is π[m] ∈ N >0 and
its set of task invocations is Invokes[m]. Each task t from Invokes[m] is non-preemptible and
given with a pair of positive integers (ω(t), wcet(t)), where ω(t) is the task frequency relative
to the mode period and wcet(t) is the task worst case execution time.

Question Is the task set in the program ΠG feasible?

Proposition 5.2
The NSGP problem is NP-hard in the strong sense.

Proof We prove the proposition by a direct polynomial-time transformation from the NSPT prob-
lem. Given an instance of the NSPT problem, a simply periodic task set Tasks = {t1, t2, ..., tn}
with ti = (0, πi, wceti), we constuct a Giotto program with a single mode m, such that π[m] =
lcm(π1, π2, ..., πn) and Invokes[m] = {(π[m]/πi, wceti)|ti ∈ Tasks}. The equivalence of feasibility of
the task sets in the two problems follows from the Giotto program semantics, which implies task
arrival times at time zero, periodic task invocations and requires task completion before the next
request occurs. �

Given an instance of the NSGP problem and a schedule, we next show how difficult is to check
whether the schedule is a valid schedule. Let |Invokes[m]| = n and for each (ωi, wceti) ∈ Invokes[m]
(1 ≤ i ≤ n) let πi be the period of the task ti, πi = π[m]/ωi. If W = max1≤i≤nωi the total number
of task requests in a single mode period π[m],

∑
1≤i≤n ωi, is bounded by nW . A schedule is

given with a function S(i, j) that maps a j-th request (1 ≤ j ≤ ωi) of the task ti (1 ≤ i ≤ n)
to the starting execution time of the request. From the three conditions of the definition of the
valid non-preemptive schedule it follows that the function S must satisfy the corresponding three
conditions:

1. (j − 1)πi ≤ S(i, j) < jπi, for each 1 ≤ i ≤ n and each 1 ≤ j ≤ ωi,

2. S(i1, j1) > S(i2, j2) =⇒ S(i1, j1) ≥ S(i2, j2) + wceti2 for each 1 ≤ i1, i2 ≤ n, each 1 ≤ j1 ≤ ωi1 ,
and each 1 ≤ j2 ≤ ωi2 , and

3. (j − 1)πi < S(i, j) + wceti ≤ jπi, for each 1 ≤ i ≤ n and each 1 ≤ j ≤ ωi.

Proposition 5.3
Given a schedule function S for the NSGP problem, checking if the schedule is valid can be done
in time no more than O(nWlog(nW )).

Proof Since the task execution times are positive numbers, for conditions 1 and 3 we need to check
if (j − 1)πi ≤ S(i, j) and S(i, j) + wceti ≤ jπi for 1 ≤ i ≤ n and 1 ≤ j ≤ ωi. This can be
done in O(nW ) time. To check the non-preemption condition 2 we first sort all S(i, j) values in
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O(nWlog(nW )) time and then for every two adjacent elements S(i1, j1) > S(i2, j2) of the sorted
list we check if S(i1, j1) ≥ S(i2, j2) + wceti2 (O(nW ) time). �
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